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ABSTRACT

This paper considers the possibility of inducing a convective
secondary flow in the fully developed channel flow of a quasi-
incompressible {Boussinesq) fluid. Instabilities of this type can
only occur when the temperature gradient in the direction of the body
force exceeds a certain critical value. This temperature gradient is
prcportional to the Rayleigh number of the fluid. We find that for
channels of arbitrary cross section, the critical Rayleigh number is
Rc 2 1360 (h/d)a where h is the arbitrary channel's maximum dimension
in the body force direction and d is the diameter of an equal area
circular channel. For two special gecmetries it is possible to im-
prove the above lower bound estimate to the critical Rayleigh number.

In a circular channel Rc 2 3450 and in a square channel Rc 2 2480.
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CONVECTIVE INSTABILITIES IN FULLY DEVELOvED FLOWS

*
M. Sherman
The RAND Corporation, Santa Monica, California

Associate Member, ASME

INTRODUCTION

Maslen [1] considered the fully developed steady flow cf an in-
compressible fluid in a channel whose generators lie parallel to an
axis. He demonstrated that the velocity components normal to the
channel axis must vanish everywhere. Velte [2] treated the fully de-
velopad steady flow of a quasi-incompressible (Boussinesq) fluid in a
similar channel with a horizontal axis. A body force acte along a
normal to the axis. The channel wall is nonuniformly heated to estab-
lish a constant temperature gradient in the fluid in the direction of
the body force ("heated from below"). Velte found that there is a
critical value for the Rayleigh number below which the transverse
velocity components vanish. The rayleigh number is proportional to
the imposed temperature gradient and is given by R = gthalkv where o
is the fluid coefficient of thermal expansion, g is the body force per
unit mass acting on the fluid, B is the magnitude of the imposed tem-
perature gradient, h is the maximum dimension of the region in the

direction of the body force, k is the fluid thermal diffusivity, and

*Any views expressed in this paper are those of the author. They
should not be interpreted as reflecting the views of The RAND Corpora-
tion or the official opinion or policy of any of its govermmental or
private research sponsors. Papers are reproduced by The RAND Corpora-
tion as a courtesy to members of its staff.
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V is the fluid kinematic viscosity. Above the critical Rayleigh num-
ber it is possible to establish a convective secondary flow.

Velte developed a method for calculating upper bounds to this
critical Rayleigh number in channels of arbitrary cross section. 1If
for design purposes it is desirable to insure the stability of the
initial fully developed channel flow, then lower bounds to the criti-
cal Rayleigh number must be established. In this paper a method is

presented to calculate these lower bounds.

THE GOVERNING EQUATIONS

Consider a fully developed quasi-incompressible flow in a channel
parallel to the y-axis. The Cartesian velocity components u, v, and w
are in the x, y, and z directions (given by the unit vectors i, l) and
k). A body force g acts in the negative z direction. The initial

velocity, temperature, and pressure distributions in the fluid are

\
u = 0, v = vo(x, z)j, w o= 0
VI = -Bk $ (1)
2 .
vp = -pg(l - afz)k + puv'v j
/

where T is the temperature, p is the pressure, p is the mean fluid

density, V is the gradient operator, and V2 is the Laplacian operator.
It is assumed that the secondary convective flow is fully develop-

ed (independent of y), hence the governing dimensionless perturbation

equations valid at the cnset of instability are (see [2])

vzvzw = Rex (2)
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vee = (3)

where ¥ is the perturbation stream function measured in units of k

(u = -Wz, W wx), and 6 is the temperature perturbation in units of

Bh. Here the gradient and Laplacian opc.ators are ir. the x, z-~plane.

If the rigid channel wall has a large thermal conductivity and heat

capacity relative to the fluid, then the initial temperature distri-

bution on the wall is maintained at all times. Thus the boundary con- »

di ions on the channel wall B are

y = VWeen = 0 on B

(4)
6 = 0 on B

PRSI

Here n is a unit outer normal to B. The above eigenvalue problem is

equivalent to the variational principle in the cross-section plane C.

fc(VZW)z dx dz
R = 5 . Y = V4 -n = 6 = 0 on B (5)
fc(ve) dx dz

The functions { and & are cheosen from 21, a space of admiz:*hie func-
tions whose { functions are four times differentiable and whose ©

functions are twice differentiable. In addition, the functions satis-
fy the constraint V29 = ¢x in the region C and the boundary conditions

on B. The critical Rayleigh number is given by Rc = min R.

GENERAIL, LOWER BOUND ESTIMATES TO Rc

PRI

;
.

Using the inequality (V\y)2 p- wi, and the constraint vze - Wx, it

follows directly from equation (5) that
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y Re = min 2 " min 2 (6)
’ [90° ax ¢z [,(v6)® dx dz

ﬁ

gﬁ over the function space 21. Employing the Principle of Monotony [3],

a2

one £finds that a lower bound to Rc is also given by the extremum prob-

lem (6) over & less restrictive function space 22 in which ¥ and 8 are

chosen independent of one another. Hence 81 is a sub-space of 22.
Consider the extremum procblem

2..2
(V7y)" dx dz
kK2 = mi f°

n 5 , vV = VWen = 0 on B (7)
J (9 dx dz

over the function space 22. The smallest extremal value of equation

(7) is identical to the principal eigenvalue of the problem posed by

VZVZW + K2V2¢ = 0 inC

(8)
¥ = VW n = 0 on B

For most regions, the principal eigenvalue cannot be calculated in a
simple manner. But for a circular channel (in which h = 4, the diame-
ter), K2 is determined from the first root of Jl(KIZ) = 0 {see [4])
where Iy is the Bessel function of the first kind of order one. There-
fore, k% = 58.74. Polya and Szego (4] have demonstrated that among
all plane regions of equal area, the circle has the smallest value of
Kz. Thus if one replaces a given arbitrary region of height h by an

equal area circle of diameter d, then

k2 = 58.74 (h/d)? (9)
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Next consider the extremum problem

9 fc(ve)z dx dz
L = min 2 , 6 = 0 on B (10)
J, 6% ax dz

over the function space Zz. The smallest extremal vaiue of equation
(10) is identical to the principal eigenviilue of the following prob-

lem:

ve+1r.e = 0 in C
(11)
6 = O on B

For a circle, L2 is cetermined fror the first root of JO(L/Z) = 0,
Therefore, L2 = 23.14. Polya and Szegd also have shown that among ,
all plane regions of equal area, the circle has the smallest value of

LZ. Analogous to the estimate (9), one then can cbtain

12 2 23.14 (h/a)? (12)

Using the divergence theorem, the boundary condition 6 = 0 on B, and

the Schwarz inequality, it follows that

2 2 2 2
{jc (ve)” ax dz} = lj; ov-e dx dz|

Ij' ov2e dx dz|® < j 6% dx dz j‘ v20)2 ax dz
(4 C C

Combining these expressions with equation (10) yields ;>
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2 f (v29)2 dx dz
Lf s £ 5 (13)
) jc (v8)*© dx dz

Substituting the estimates (7) .aad (13) into equation (6) and using

the estimates (9) and (12) gives
R, 2 1360 (/)" (14)

As an illustrative example, consider a channel whose cross section
1s an equilateral triangle of height h. A simple calculation yields

(h/d)4 = 1,85 and Rc 2 2520 for this channel.

LOWER BOUNDS TO Il\. IN TWO SPECIAL CASES

For channels with circular or square cross sections, the lower
bound estimates of the previous section may be improved. In these two
special cases we find estimates from equation (6) over the function

space £, rather than the less restrictive function space T

1 2°

The Circular Channel. In a circular channel (0 < r < %,

0 s ¢ s 21, ¢ measured counterclockwise from the x-axis) the complete

set of eigenfunctions to equation (8) is given by (see ref. [4])

R e W)

=0 n=1
(15)
{Amn cos mp + an sin mw}

th root of

The associated eigenvalues are K2 where K is the n
nn mn
Jm+1(K/2) = 0. Vel.e [2] has demonstrated that the stream function

mode associated with the critical Rayleigh number is symmetric with
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respect to both the x- and the z-axis. Thus the subset of (15) that

has the proper symmecry property is given by

n (Zr)m Jmc—‘zi@ } Jm (Lmnr>} cos mp

I\/Je
?L\/Js

m an even integer (16)

2'

The principal eigenvalue of the subset is K = 58,74,

2
Ko1
The complete set of eigenfunctions to equation (11) for the cir-

cular channel is given by

-} [-
8 = z z Jm@‘mnx) {Amn cos mp + B sin nt,o} (17)

=0 n=l

The associated eigenvalues are Lin where Lmn is the nch root of

Jm(L/?.) = 0. From the constraint vze = \bx and the symmetry property
of ¥, one can conclude that 6 must be symmetric with respect to the
x-axis and anti-'.syrmetric: with respect to the z-axis. The complete

subset of (17) that has the proper symmetry property is given by

. -] @®
8 = Z Z Aanm L r) cos myp, m an odd integer (18)

The principal eigenvalue of the subset is L2 - = 58.74. One now

2
I
has at hand the following estimates for the circular channel

—
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2 fc (VZW)2 dx dz

o1 I wH? dx dz

2 Ic (Vze)2 dx dz

. (v2)? dax dz

Substituting the above estimates into equation (6) gives

Rc 2 3450 (19)

for the circulsr channel. Recently Sherman [5] used a Rayleigh-Ritz
technique and the variational principle (5) to establish the upper

bound estimate

Rc < 6510 (20)

for the circular channel.

Ihe Square Channel: in & square channel (]xl <X, ‘z‘ < %), the
eigenfunctions of equation {8) cannot be determined in any simple
form. Weinstein [6] has determined a lower bound to the principal
eigenvalue, K2 2z 5.1 ﬂz. The associated principal eigenfunction is
symmetric with respect to the x- and the z-axis. Veltec [2] has shown
that the critical stream function mode alsc has this symmetry.

The complete set of eigenfunctions tc equation (11) for the

square channel is
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6 = }ﬁ 2: {A cos (2m - 1) "x + B sin 2mnx} .
) m m
m=]l n=l
{An cos (2n - 1) ny + Bn sin ZuWy} (21)

As in the circular channel, one can conclude that 6 must be symmetric
with respect to the x-axis and anti-symmetric with respect to the z-

axis. The complete subset of eigenfunctions with the required symme-

try is

"

m=]

Amu sin 2o™x cos (2n - 1) ny (22)

T~

1

The principal eigenvalue of this subset is Lz = 5ﬂ2. Thus for the

square channel one has the estimates

2,.2
2 _ [, @0 dx dz
fc (Vy)2 dx dz

5.1m

s J (7%0)? ax az

5n <

[. @8)? ax az

Substituting the above estimates into ejuation (6) gives

R, 2 2480 (23)

Velte calculated the upper bound estimate for the square channel

R, < 5030 (24)
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CONCLUDING REMARKS

The lower bounds to Rc established in this paper differ con-
siderably from the upper bounds calculated by the Rayleigh-Ritz
methcd. Nevertheless the lower bounds provide the designer wich a
limit of error which the Rayleigh-Ritz method cannot yield. Better
lower bounds may be established if the Weinstein method [3] can be
successfully applied to the variational principle given by equation
(5). It is evident from both lower bound and upper bound calculations
that the nature of the confining region can kave a marked effect on
the critical Rayleigh number.

Finally it should be noted that for rully developed flow between
two horizontal planes of infinite lateral extent, the critical Rayleigh

number is exactly R = 1707.8 (71.
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